How do steel inserts perform in high-feed milling

The use of cutting tool inserts is becoming increasingly common in machining operations. Cutting tool inserts are small pieces of metal that are inserted into a cutting tool and used to support and guide the cutting action. They are designed to help reduce the risk of tool breakage during machining operations and can be very effective in doing so.

When using cutting tool inserts, the cutting tool is able to work at higher speeds and with greater precision. This means that the cutting tool is subjected to less strain and is less likely to break. The inserts also help to reduce vibration and chatter, which can cause the cutting tool to break. In addition, they help to distribute the cutting force more evenly, which can also reduce the risk of tool breakage.

Cutting tool inserts can also help to reduce the amount of time needed for a machining operation. By reducing the amount of time needed for the cutting process, the risk of tool breakage is reduced. This is because there is less time for the cutting tool to be subjected to excessive strain.

Overall, the use of cutting tool inserts can be very effective in reducing the risk of tool breakage during machining operations. The inserts help to reduce the amount of strain on the cutting tool, reduce vibration and chatter, and reduce the amount of time needed for the machining operation. All of these factors contribute to a decrease in the risk of tool breakage and can ultimately lead to improved productivity and efficiency.

The use of cutting tool inserts is becoming increasingly common in machining operations. Cutting tool inserts are small pieces of metal that are inserted into a cutting tool and used to support and guide the cutting action. They are designed to help reduce the risk of tool breakage during machining Indexable Inserts operations and can be very effective in doing so.

When using cutting tool inserts, the cutting tool is able to work at higher speeds and with greater precision. This means that the cutting tool is subjected to less strain and is less likely to break. The inserts also help to reduce vibration and chatter, which can cause the cutting tool to break. In addition, they help to distribute the cutting force more evenly, which can also reduce the risk of tool breakage.

Cutting tool inserts can also help to reduce the amount of time needed for a machining operation. By reducing the amount of time SNMG Insert needed for the cutting process, the risk of tool breakage is reduced. This is because there is less time for the cutting tool to be subjected to excessive strain.

Overall, the use of cutting tool inserts can be very effective in reducing the risk of tool breakage during machining operations. The inserts help to reduce the amount of strain on the cutting tool, reduce vibration and chatter, and reduce the amount of time needed for the machining operation. All of these factors contribute to a decrease in the risk of tool breakage and can ultimately lead to improved productivity and efficiency.

The Carbide Inserts Website: https://www.estoolcarbide.com/cutting-inserts/snmg-insert/

The Benefits of Using Indexable CNC Inserts in Milling Applications

Carbide inserts are one of the most important tools in the machinist’s toolbox. They are the APKT Insert secret weapon for exceptional tool life and efficiency. Carbide inserts are a combination of tungsten carbide particles and a metallic binder. The combination of these two materials makes them extremely hard and resistant to wear.

Carbide inserts are used for machining operations such as drilling, milling, and turning. They can also be used for grinding, boring, and threading. The carbide particles in the insert provide a cutting edge that is much sharper than other materials such as high speed steel. This sharpness allows for much faster cutting speeds and longer tool life.

Carbide inserts are also known for their excellent wear resistance. As the cutting edge wears, the insert gradually wears away instead of becoming dull. This reduces the need for frequent tool changes, saving time and money.

The carbide material used in the CCGT Insert insert also makes them more resistant to heat. This helps them maintain a consistent cutting edge, even under the most extreme conditions. This makes them ideal for high-speed machining operations and helps to reduce tool breakage.

Carbide inserts also provide high levels of accuracy and repeatability. The extremely hard carbide material helps to resist deflection and vibration, resulting in a better surface finish and more precise cuts.

Overall, carbide inserts are an incredibly useful tool for machinists. They provide better tool life, higher efficiency, and improved accuracy. They are the secret weapon for exceptional tool life and efficiency.
The Carbide Inserts Website: https://www.estoolcarbide.com/product/hunan-estool-manufacture-cnc-turning-tools-lathe-carbide-grooving-inserts-pvd-coating-of-mgmn200-300-400-500-600/

How do steel inserts handle difficult-to-machine materials in the medical device industry

Indexable inserts for high-feed turning are increasingly popular in the manufacturing industry. This cutting-edge technology has revolutionized the way manufacturers approach metal removal rates. The inserts allow for higher metal removal rates than ever before, allowing for faster machining, improved productivity, and improved quality in the end product.

Indexable inserts for high-feed turning feature multiple cutting edges, which makes them highly efficient at metal removal. This is because the inserts are able to cut into the material more quickly, reducing the dwell time of the cutting tool. As a result, the cutting insert can cut at higher speeds and feed rates than conventional cutting tools. The cutting edges of the inserts also last longer, further reducing machine downtime and production costs.

Indexable inserts for high-feed turning also feature a unique geometry, which helps to maximize metal removal rates. The geometry of the insert is designed to optimize the cutting angles and chip formation. This ensures that the cutting force is evenly distributed, resulting in smoother, more precise cuts. Additionally, the inserts are designed to withstand high temperatures and pressures, ensuring that the cutting edge lasts longer and retains its cutting performance.

Finally, indexable inserts for high-feed turning are highly cost-effective. They are made with a variety of materials, making them reasonably priced. This allows manufacturers to take advantage of the increase in metal removal rates without breaking the bank. Furthermore, the inserts are easy to install, reducing downtime and increasing efficiency.

Indexable inserts for high-feed turning are the perfect solution for metal removal. They allow manufacturers to take advantage of high-feed turning speeds, maximizing metal removal rates. Furthermore, the inserts are cost effective and easy to install, reducing downtime and increasing productivity.

Indexable inserts for high-feed turning are increasingly popular in the manufacturing industry. This cutting-edge technology has revolutionized the way manufacturers approach metal removal rates. The inserts allow for higher metal removal rates than ever before, allowing for faster machining, improved productivity, and improved quality in the end product.

Indexable inserts for high-feed turning feature multiple cutting edges, which makes them highly efficient at metal removal. This is because the inserts are able to cut into the material more quickly, reducing the dwell time of the cutting tool. As a result, the cutting insert can cut at higher speeds and feed rates than conventional cutting tools. The cutting edges of the inserts also last longer, further reducing machine downtime and production costs.

Indexable inserts for high-feed turning also feature a unique geometry, which helps to maximize metal removal rates. The geometry of the insert is SNMG Cermet Inserts designed to optimize the cutting angles and chip formation. This ensures that the cutting force is evenly distributed, resulting in smoother, more precise cuts. Additionally, the inserts are designed to withstand high temperatures and pressures, ensuring that the cutting edge lasts longer and retains its cutting performance.

Finally, indexable inserts for high-feed turning are highly cost-effective. They are made with a variety of materials, making them reasonably priced. This allows manufacturers to take advantage of the increase in metal removal rates without breaking the bank. Furthermore, the inserts are easy to install, reducing downtime and increasing efficiency.

Indexable inserts for high-feed turning are the perfect solution for TOGT Inserts metal removal. They allow manufacturers to take advantage of high-feed turning speeds, maximizing metal removal rates. Furthermore, the inserts are cost effective and easy to install, reducing downtime and increasing productivity.

The Carbide Inserts Website: https://www.estoolcarbide.com/pro_cat/milling-inserts/index.html

How do cutting inserts enhance chip control during machining

Carbide inserts are an effective tool for both light and heavy-duty cutting applications. Carbide inserts are made out of a combination of tungsten carbide and cobalt, which makes them extremely hard and durable. This makes them ideal for cutting through hard materials like metal, plastic, and even wood. Carbide inserts are used in a variety of industries, from aerospace to automotive, and they have become increasingly popular in recent years due to their versatility and effectiveness.

When it comes to light-duty cutting applications, carbide inserts are ideal. They can be used for cutting thin pieces of material, such as sheet metal or plastic, without causing any damage to the material. They are also able to cut through softer materials like wood. The inserts can be used in a variety of ways, such as milling, turning, and drilling, and they provide a precise and accurate cut. In addition, they can be used in lathes and other machine tools, making them ideal for light-duty applications.

For heavier-duty cutting applications, carbide inserts are also an effective tool. They are capable of cutting through tough materials like stainless steel and titanium, and they can be used in high-speed machining operations. The inserts can also be used for cutting thicker pieces of material, making them an ideal tool for industrial applications. In addition, the inserts can be used in a variety of machine tools, including lathes, mills, and drills, allowing them to be used for a variety of cutting applications.

Overall, carbide inserts can be used for both light and heavy-duty cutting applications. They are extremely durable and can be used for a variety of different materials. In addition, they can be used in a variety of machine tools, making them ideal for light and heavy-duty applications. With their versatility and effectiveness, carbide inserts can be a great addition to any shop.

Carbide inserts are an effective tool for both light and heavy-duty cutting applications. Carbide inserts are made out of a combination of tungsten carbide and cobalt, which makes them extremely hard and durable. This makes them ideal for cutting through hard materials like metal, plastic, and even wood. Carbide inserts are used TNMG Insert in a variety of industries, from aerospace to automotive, and they have become increasingly popular in recent years due to their versatility and effectiveness.

When it comes to light-duty cutting applications, carbide inserts are ideal. They can be used for cutting thin pieces of material, such as sheet metal or plastic, without causing any damage to the material. They are also able to cut through softer materials like wood. The inserts can be used in a variety of ways, such as milling, turning, and drilling, and they provide a precise and accurate cut. In addition, they can be used in lathes and other machine tools, making them ideal for light-duty applications.

For heavier-duty cutting applications, carbide inserts are also an effective tool. They are capable of cutting through tough materials like stainless steel and titanium, and they can SNMG Inserts be used in high-speed machining operations. The inserts can also be used for cutting thicker pieces of material, making them an ideal tool for industrial applications. In addition, the inserts can be used in a variety of machine tools, including lathes, mills, and drills, allowing them to be used for a variety of cutting applications.

Overall, carbide inserts can be used for both light and heavy-duty cutting applications. They are extremely durable and can be used for a variety of different materials. In addition, they can be used in a variety of machine tools, making them ideal for light and heavy-duty applications. With their versatility and effectiveness, carbide inserts can be a great addition to any shop.

The Carbide Inserts Website: https://www.estoolcarbide.com/pro_cat/drilling-inserts/index.html

Carbide Inserts for Renewable Energy Industry: Enabling Efficient Wind and Solar Power Generation

INTRODUCTION

 

Aluminum is the most loved machined material because of its unique features for machinability and this is why it is most commonly used in manufacturing industry. But the aluminum is not milled using any tool, it requires careful study of its properties and most importantly, an extensive knowledge of tool selection. Understanding the tool requirement by machinist can give them numerous benefits like product pricing, lowering the production cost and make required products with less effort and quality finishing.

The end mills are used to create profile, plunging and required pocketing in aluminum. The various properties of end mills decide which material they will mill easily. Besides, the end geometry of an end mill, factors like end mill coating, helix angle, number of flutes etc. play crucial role to get the job done and vice versa.

This article will explain all the factors of and end mill that must be considered before selecting the end mill. Additionally, the article will also cover the machine requirements for milling aluminum and lastly give names of some popular end mills that are perfect to use.

MATERIAL
The best preferred material for making end mills is carbide because it says sharp for long time. Although carbide-made end mills are brittle in nature, but using it on aluminum makes it a great cutting tool. One of the downside of carbide end mills is that they are expensive compared to High-Speed steel. But if you can afford them, they can cut the aluminum with high speed and feed rates and will also last longer in comparison.
TOOL COATING
Since aluminum is soft when compared to other materials, during CNC milling, its chips can clog in the CNC tool, especially when you are plunging deeper. Coating the end mills with the right material can help resolve the problem.
Most common used coating on an end mill is Titanium Aluminum Nitride (TiAIN). These are slippery coatings and allows the chips to slip easily through the flutes while milling. It is also effective in case you are not using any coolant. The coating is mainly used on carbide tools.
But if you are using high-speed steel (HSS), you should use Titanium Carbo-Nitride (TiCN). This coating will also serve the purpose for lubricity required for aluminum milling. The only downside of this type of coating is its high cost. Other type of coating material is Titanium Diboride (TiB2) etc. Though there are uncoated tools available, using them will only bring damage to your tool and the work piece.

In 2021,HUANA develop DLC Coated for Aluminum cutting which is newest for milling Aluminum

FLUTE COUNT

Number of flutes are one of the most important factors while selecting the end mill. The end mills are available in 2, 3, 4, and etc. The purpose of end mill is removing the chips from the work piece while milling. The greater the number of flutes in end mill, the softer the material to use for milling.
End mills with 2 and 3 flutes are used for working on aluminum. Increase in the number of flutes can create difficulty for effective chips evacuation at high speeds because aluminum produce larger chips. So increasing the flute means smaller chip valley which is why the end mills with high number of flutes should not be used.
Normally, 2 flutes end mills are used for aluminum. However, using end mills with 3 flutes will get the job done more efficiently, easily, and will deliver more finishing operations. With the setting of right parameters, 3 flute end mills can also serve as roughers successfully.
Besides considering the number of flutes in an end mill, you should also consider other factors like rigidity, operation and required material removal rate that also impacts heavily on the tool’s selection.

HELIX ANGLE
The helix angle is the measure of angle between tool’s centerline and straight line tangent with the cutting edge. The higher the helix angle, the more easily chips of softer materials can escape. Therefore, end mills with comparatively higher helix angles than standard end mills are used. The angle with 35°, 40°, or 45° are preferred.
In the market, variable helix tools are also available which reduces harmonics and chatter and also enhances material removal rates efficiency.
35° or 40° helix angles are used as a standard for roughing and slotting in aluminum. But 45° helix angles are suitable for high efficiency milling toolpaths because end mills with higher helix angles makes more aggressive cut and wraps around the tool faster.

TOOLING OPRERATION

As discussed earlier, 2 or 3 flutes in an end mill will deliver the right results. But for specific usage and machine setup, you need to consider more tooling option to give better performance and to carry out specialized milling, slotting or profiling. Following are some of the tooling operation that can give better results.

 

CHIPBREAKER

Effective chips evacuation is one of the most crucial factor while machining aluminum. 2-3 flutes operating Coated Inserts at recommended feed rates and speeds lets escape the chips fairly well. But there is another specialized tool more efficient than the standard ones. The 3 flute chipbreaker tool runs at more speed and feed rates and delivers better results. The geometry of the chipbreaker produces smaller chips for fast evacuation and leaves half-finished surface.

 

HIGH–BALANCE END MILLS

These end mills are manufactured to improve performance in highly balanced machining centers that have elevated feed rates and elevated RPM. They are used to main precise balance in high velocity machining aluminum up to 33,000 RPM.

RUNNING PARAMETERS
If you want to optimize your productivity and achieve optimum machine results, then you need to have the right parameters settings. The settings also help Machining Inserts in selection of end mills. The aluminum is indeed an easier material to machine but if you can optimize your machine with the right settings and push it to its maximum limit, you can achieve maximum result out of the machine.
There are some general guidelines that you should follow for machining aluminum. For milling cast aluminum alloys, 500-1000 SFM surface footage is recommended. The RPM is based on cutter’s diameter. For wrought aluminum alloys, 800-1500 SFM surface footage is recommended. Following is one of the widely known running parameter to follow.

HIGH EFFICIENY MILLING
HEM or High Efficiency Milling strategy is become rapidly popular in manufacturing industry. There are CAM programs that include HEM toolpaths. While any machine is capable of performing HEM, it is important that CNC machines should also contain fast processor.

MACHINE REQUIREMENTS FOR ALUMINUM MILLING

Having the right machine for aluminum milling is vital to have maximum advantage of machine. Ideally, the machine should have 200 IPM feed rate and 18,000 RPM spindle capability. Following are some standard machine settings for aluminum milling

 

For peripheral rough milling

  • Climb mill having coated carbide end mill of ?”?diameter 3-flute.
  • Width of cut: 30 percent of cutter diameter
  • Axial depth-of-cut: 0.750”
  • SFM: 2000
  • RPM: 15,280
  • IPT: 0.004
  • IPM: 200

Milling carried with these machine settings will remove metal at 22.5 cubic inches/minute.

For full width slotting

  • Recommended 2 flute end mill
  • Plunge in vertical direction 1 x diameter before moving X-Y direction.
  • SFM: 1,000
  • RPM: 7,640
  • IPT: 0.003
  • IPM: 46

With these settings, the metal removal rate will be 11.5 cubic inches/minute

Note: ensure to program feed and speed once the slot is in for peripheral milling to open up the cavity.

TYPE OF END MILLS

The types of end mills with different end shapes are used to create different profiles, slotting, and different texture in a work piece. Following are the various end mills used to slot aluminum:

ROUGHING END MILLS

These end mills have teeth at their flute’s periphery used to create rough texture on the surface. The purpose of these teeth is they transform material into small chips and then evacuates the material quickly. It also reduces vibration during milling.

FINISHING END MILLS

These end mills deliver smooth finish. They have smooth outside dimeter and one square end. This diameter creates smooth finish on a work piece.

?

?

BALL-NOSE END MILLS For Aluminum

They are also called full-radius end mills because they have a ball-shape edge. On Aluminum they are used to create 3D contouring, arc grooves and profile milling etc.

SINGLE FLUTE END MILLS

The single flute end mills are designed for applications that require fast and high-volume material removal. They are very versatile and delivers great rough texture. You can use them to mill brass, plastics, aluminum or exotic composites but do not use them on steel.

Their single cutting edge design provides more space for chips to evacuate resulting in higher chip loads and faster feed rates.

CONCLUSION

Aluminum is highly workable and light weight material. Products manufactured from this material are used in almost every industry. Its low cost and flexibility makes it a demandable material for CNC milling.

Due to its specific properties, it is necessary to carefully select the end mills otherwise it may damage the work piece. End mills made of carbide are highly durable and has high speed and feed rates. When end mills are coated, they perform better in milling because they provide smooth and slippery surface for quick chips evacuation.

The single flute and 2 or 3 flute end mills are widely used for aluminum. Do not select end mills with flutes greater than 3 otherwise the chips will clog the flute and cause material damage.

The more angular the helix angle, the more easily and quickly chips removed. Typically, 35°, 40°, and 45° helix used to mill aluminum for good efficiency due to more aggressive cutting.

Apart from the selection of end mill, setting the right machine requirements will result in maximum output. The above parameters are typical but they will need tweaking for special applications.

The Carbide Inserts Website: https://www.estoolcarbide.com/product/tnmg-carbide-inserts-for-stainless-steel-turning-inserts-p-1187/

What is Runout: GD&T Symbol Explained

When it comes to carbide cutting tools, tungsten carbide is probably the first material that WCMT Insert runs across people’s minds. actually, it is tungsten carbide cutters that people refers to when the idea of carbide cutting tool is brought about. The advent of tungsten carbide cutters can be dated back to the early 1900s. Since then, tungsten carbide has been applied in the construction of cutting tools ,as it can provides higher cutting speeds, higher feed rate, and longer tool life time .
Tungsten carbide contains the different content of cobalt and tungsten. The construction endows makes it have excellent strengthness; it is much better than steel. In addition to the strengthness, tungsten carbide also has outstanding hardness; it is ranked 9 on the Mohs scale. As a result, tungsten carbide is ideal choice for making cutting tools, machining tools and abrasives.
We,Zhuzhou Apple carbide tools is a company specializing in the production of carbide cutting tools in China Carbide Turning Inserts ,Carbide insert and Carbide end mill is our hot selling products ,Professional engineers and sales teams are committed to providing our customers with good quality and services,welcome to contact us for more details ,thanks!
When it comes to carbide cutting tools, tungsten carbide is probably the first material that runs across people’s minds. actually, it is tungsten carbide cutters that people refers to when the idea of carbide cutting tool is brought about. The advent of tungsten carbide cutters can be dated back to the early 1900s. Since then, tungsten carbide has been applied in the construction of cutting tools ,as it can provides higher cutting speeds, higher feed rate, and longer tool life time .
Tungsten carbide contains the different content of cobalt and tungsten. The construction endows makes it have excellent strengthness; it is much better than steel. In addition to the strengthness, tungsten carbide also has outstanding hardness; it is ranked 9 on the Mohs scale. As a result, tungsten carbide is ideal choice for making cutting tools, machining tools and abrasives.
We,Zhuzhou Apple carbide tools is a company specializing in the production of carbide cutting tools in China ,Carbide insert and Carbide end mill is our hot selling products ,Professional engineers and sales teams are committed to providing our customers with good quality and services.

The Carbide Inserts Website: https://www.estoolcarbide.com/product/hot-sale-cnc-machines-turning-carbide-manufacturer-inserts-wnmg-tm/

Factors to Consider when Choosing Carbide Drill Bits

Carbide inserts are virtually certain to have been used at some stage in the careers of all those who have done work with machines that cut metal. Inserts made of carbide for cutting tools are a product that cannot be overlooked in the metal cutting tool sector. Boring, turning, cutting, drilling, grooving, hobbing, milling, and threading are just some of the many applications that make use of them.

Carbide gives materials a high hot hardness in addition to a remarkable wear resistance when used in their construction. Carbide inserts are a superior option than high-speed steel when it comes to durability, making them a good pick for use in applications that require cutting metal. Coatings that provide additional resistance to wear, such as titanium nitride (TiN), titanium carbonitride (TiCN), titanium aluminum nitride (TiAlN), and aluminum titanium nitride (AlTiN), may lengthen the life of inserts by a significant amount. Examples of these coatings include titanium nitride (TiN), titanium carbonitride (TiCN), titanium aluminium nitride

Carbide inserts are manufactured in a large number of distinct geometric forms, each of which is customised specifically to each certain application in order for them to be able to carry out the various cutting processes. Carbide inserts are used in a variety of industries, including automotive, aerospace, and construction.

Carbide is more brittle than other standard tool materials, making it more subject to chipping and breaking, in addition to being more costly per unit than other typical tool materials. Because of these drawbacks, the carbide cutting tip itself is sometimes designed in the form of a tiny insert that is intended to be used in conjunction with a larger cutting tip on a tool whose shank is constructed from a different material, most frequently carbon tool steel. This provides the advantage of employing carbide at the cutting interface without the high expense and brittleness that would be associated with manufacturing the complete tool out of carbide. Carbide inserts are used in the majority of contemporary face mills, in addition to numerous lathe tools and end mills.

Inserts that are round or circular may be used for button milling, in addition to turning and splitting radius grooves. This is because of their versatility. Copy cutters, which are often referred to as button mills, are machines that make use of circular inserts that have a radiuses edge to a significant degree. Because of this, better feed rates and deeper cuts may be performed while consuming a much reduced amount of electricity. The transformation of radial grooves into a round component is referred to as “radius groove turning,” and the method is named after the term. Parting is the process of cutting through a section in its entirety, and the term refers to both the procedure and the result.

When one of the insert’s cutting edges is worn, it may be turned to a fresh, unused edge for shapes that are triangular, square, rectangular, diamond, rhombic, pentagon, and octagon. Other shapes that have multiple cutting edges include octagon, pentagon, and rhombic. Other forms, such as rhombuses, pentagons, and octagons, also contain many angles that may be used for cutting. These inserts have a variety of applications, including turning, boring, drilling, and grooving, to name a few of them. You may get more use out of an insert by utilizing its worn edges for roughing applications before rotating it to a fresh edge and using it for final machining. This will allow you to get more life out of the insert.

Carbide insert wear that is visible in woodcutting is caused, in great part, by chemical corrosion with the cobalt binder of the carbide (glue). Because of this, the tough tungsten particles are able to leach away, which results in a blunting of the cutting edge.

Carbide CNC inserts Process:

  • Batching
  • The absolute best raw material consists of a very fine spherical powder formed of cobalt, in addition to other compounds that have an extremely high level of purity. It is possible for each batch of powder to preserve its homogeneity and consistency throughout the production process by using the most cutting-edge mixing and wet milling technologies, in conjunction with accurate calculation.

  • Ball Milling
  • The nanotubes are reduced to an extremely fine powder by a process known as ball milling, which is a kind of grinding. This operation is also known as milling. During the process of ball milling, a localised high pressure will be formed as a consequence of the collision between the tiny hard balls that are enclosed in a concealed container. This collision will take place within the mill.

  • Spray Drying
  • Utilizing a spiral spray dryer tower allows for the powder to have an exceptional fluidity, which, in turn, leads to a density that is consistent throughout the carbide inserts blanks. This is the end product of the process. Our fixed tower, which is only committed to defined tasks, avoids any mixing of grains of varied sizes within a batch. This helps to ensure that the uniformity and high quality of each and every substrat is maintained throughout the production process.

  • Pressing
  • To get started, the material is put through a press that is highly automated, CNC controlled, and equipped with punches and dies so that it may be pressed into the necessary basic shape and size. The inserts, after being pressed, have a look that is quite similar to that of a true carbide insert; nevertheless, their hardness is not even close to meeting the requirements. Imported press machines and high-precision moulding machines, along with homogeneous spray powder, ensure that the density of the substrate body is comparable with the density of the clearance as well as the cutting edge of carbide inserts. This is accomplished by ensuring that the density of the substrate body is the same as that of the clearance. The grind value is delicately adjusted so that the whole surface and cutting edge are constant, as well as the tool’s durability and duration of use. This is done so that the tool may be used for a longer period of time.

  • Sintering
  • In order to get the desired result of increased brittleness, the insert is subjected to a heat treatment that lasts for 15 hours and is carried out at a temperature of 1500 degrees Celsius. Sintering is the process by which the molten cobalt and tungsten carbide particles are brought together and bonded together. First, the insert goes through a significant shrinkage, and this shrinkage must be precise in order to achieve the appropriate tolerance; second, the powder mixture is transformed into a new metallic material that is known as cemented carbide. The treatment process that takes place in the sintering furnace accomplishes two goals. The cobalt magnetic pole tolerance on the inside of the sintering furnace is guaranteed to be within 0.3, and the magnetic force is guaranteed to be within 0.5. Neither of these parameters may be outside of their respective ranges. Carbide inserts that are manufactured using a large number of batches have remarkable stability. This is because even the smallest amount of variation is sufficient to minimise the quality variation of each batch to a minimum as much as is humanly feasible.

    The following phase in the process, which comes after the insert has achieved the necessary amount of hardness, is to bring it to a point where it can be delivered to the customer. Before going on to the next step of manufacture, we will first use the coordinate measuring equipment to do a comprehensive check to confirm that the size of the insert satisfies all of the parameters. This will be done before we move on to the next stage.

  • Gross Inspection
  • When doing quality control on the raw materials, it is necessary to make use of a carbon-sulfur analyzer. This is done to ensure that the tungsten carbide powder has an adequate amount of both carbon and Sulphur.

    After the sintering process, the material is examined using a variety of tools, including the following: Conduct tests to determine the TRS of the carbide rod, as well as its microstructure, cobalt concentration, and the material’s hardness. Include a dropping test to confirm that there is no flaw in the material in the centre or inside of the blank. Additionally, include an ultrasonic scanner for carbide die blanks to check that there is no sand hole inside the blank.

    After being sintered, the material is subjected to a manual examination, which it must pass. Carburization and decarburization, sand holes in the surface, and tiny fissures are some of the things that should be looked for while doing a visual inspection of the material to determine whether or not it is flawed.

    After sintering, the sizes are checked using the following criteria: A micrometer will be used to measure the dimensions, and an additional test for roundness will be performed on carbide rods.

  • Grinding
  • Diamonds are used in the grinding process so that the carbide insert will ultimately have the correct shape after the operation is finished. In order for the inserts to be of a quality that is commensurate with the requirements imposed by the geometric angles, they are ground using a variety of techniques. Throughout the process of grinding, the insert is subjected to checks and measurements by the grinder’s built-in measuring control at a number of different places.

  • Semi-Inspection
  • After yet another visit to the lab for a quality check, the top and bottom of the insert are ground to the right thickness. This completes the manufacturing process. The stage that we are now at is called the semi-inspection. Grinding cemented carbide, which is the hardest material that humans have ever discovered, needs industrial diamond, which is the hardest mineral that exists on any planet.

  • Passivation
  • After the insert has had its thickness reduced to the proper level, it is subjected to further grinding in order to create the ideal form and dimensions for it. Higher standards, both in terms of performance and stability, have been imposed on cutting tools in order to meet the needs of contemporary high-speed cutting and automated machine tools. In particular, coated tools have to go through the process of passivation before they can be coated. This is done to guarantee that the coating will be durable and will last for a long time. The objective of the edge passivation technology is to solve the issue of the micro notch defect that is left on the edge of the carbide inserts after grinding, to reduce or eliminate the edge value, and to achieve the objective of making the edge smooth, sharp, and durable.

  • Cleaning
  • Once the inserts have been machined, the next step is for them to be cleaned, and then they are shipped to be coated. When working with the inserts at this stage, it is imperative that protective gloves be used so that no oil or dust gets on the hands. They are given a coating after first being positioned into fixtures that are fastened to a carousel and then being placed within an oven that maintains a low pressure. This is the component of the insert that is responsible for giving it its unique color.

  • Coating
  • Not only does it completely relieve the internal tension of the substrate, but it also removes the unevenly high edges of the carbide inserts, which means that the continuity and consistency of the edge of each carbide insert is substantially improved. The state-of-the-art sandblasting and grinding equipment that are equipped with the pre-coating treatment method that was created by our company make this accomplishment feasible.

    Chemical vapour deposition, often known as CVD, and physical vapour deposition are the names of the two methods that are used to coat objects in today’s world (PVD). The nature of the material and the processing procedure come into play when deciding which coating method to use. The thickness of the coating is going to be determined by the application of the insert, and the thickness of the coating is going to have an effect on the durability and the life of the insert. The surface of the cemented carbide is coated with a number of very thin coatings, including as titanium carbide, aluminum oxide, and titanium nitride. These coatings have the potential to considerably prolong the material’s service life and durability. The fact that there are a lot of coatings is the closely guarded technical secret behind this.

    Before adding gaseous chloride and oxide, as well as methane and hydrogen, the insert has to be positioned within the furnace in the event that the coating procedure involves the CVD approach. These gases interact with one another and also take action on the surface of the cemented carbide to generate the insert when the temperature reaches one thousand degrees Celsius. You will wind up with an even coating that is no thicker than a few thousandths of a millimeter at most. This will be the result of your efforts. The value of some coated inserts goes up because the surface is given a golden finish. In addition, the lifespan of the coated inserts is much longer than that of the untreated inserts by a factor of five. PVD is sprayed onto the insert while it is heated at a temperature of 400 degrees Celsius.

  • Inspection
  • Following the completion of the final inspection, each insert is checked against the blueprints and the batch order to ensure that it meets the standards. After that, you may finally start packing it. After having the proper grade laser-etched into the insert, it is then placed in a grey box that has a printed label affixed to it. Finally, the insert is given its final presentation. It is now ready to be distributed to the many customers who purchased it. On the insert box, you’ll find not only information about the product, but also the date, as well as the serial number.

    Why Carbide Inserts Are So Great?

    • When compared to other types of tools, carbide inserts provide superior levels of productivity and cost effectiveness.
    • Carbide is a particularly durable substance, which results in a significantly increased amount of time-spent working.
    • Tungsten carbide is available in more than a dozen distinct grades, and each of these grades has the potential to be used for a variety of purposes.
    • Carbide materials, when used as cutting tools, give a surface finish quality that is much superior to that of other materials.

    In addition, carbide recycling materials such as carbide inserts may be used to a wide variety of purposes, which makes these materials an important component for a lot of different companies. Let’s take a more in-depth look, shall we?

    • Surgical Instruments

    Tungsten carbide is one of the most often used instruments because it is both precise and long-lasting, two qualities that are essential for a variety of medical operations. One of the most noteworthy applications for carbide is in surgical instruments. Tungsten carbide is used to manufacture the tip of the blade of the tool as well as the end of the utensil, despite the fact that the base of the tool itself is normally fashioned from titanium or stainless steel.

    • Jewelry

    Carbide is an excellent material for jewelers all over the world to use, not just for the shape of jewelry but also for the jeweler itself. Tungsten is an excellent material for wedding rings and other types of jeweler because of its high level of hardness, which places it just slightly below that of diamonds. In addition, jewelers have to depend on effective tools in order to work on these items, and carbide is an excellent material for that purpose. What’s not to like about tungsten jeweler, since it has a great appearance, is highly durable, and is often less expensive than gold?

    • Nuclear Science

    Carbide has also shown to be an efficient neutron reflector in several applications. This robust substance was also employed during the early research into nuclear chain reactions, notably for the protection of weapons during those early studies. Although the usage of carbide in this business is not quite as prevalent as it may be in some of the others, it is very essential that anybody working with any kind of material do so in the most careful manner possible..

    Conclusion

    The insert grade that you employ may make all the difference in the world when it comes to how productive your manufacturing process is, and this is true regardless of the size, material, or TCMT Insert design of the component. You may keep ahead of the competition by choosing the appropriate insert for the particular machining process you will be doing. Inserts are an essential part of the metal cutting process and cannot be imagined without them. The inserts themselves are crafted from some of the most abrasive substances that can be found anywhere in the globe.

    Carbide inserts manufacturers like HUANA are able to fulfil the demands for ever-increasing feeds and speeds, as well as the need for longer tool life and reduced costs, by continuously refining the designs of tungsten carbide inserts and creating better and better coating methods. As one of the leading manufacturers of carbide inserts, HUANA offers the best cutting tool solution for almost any application or machining process. With a variety of inserts and insert configurations that have been designed specifically Cutting Tool Inserts for different metals, such as steels, stainless steel, cast iron, and aluminum alloy, HUANA is able to cater to a wide range of cutting needs. Whether you are roughing, grooving, finishing, or doing any of the various forms of machining. Due to the extensive variety of carbide insert goods and solutions that we provide, we are certain that you will find exactly what you are looking for.

    The Carbide Inserts Website: https://www.estoolcarbide.com/product/tngg160402r-l-s-grinding-cermet-inserts-p-1212/ Factors to Consider when Choosing Carbide Drill Bits

    Carbide inserts are virtually certain to have been used at some stage in the careers of all those who have done work with machines that cut metal. Inserts made of carbide for cutting tools are a product that cannot be overlooked in the metal cutting tool sector. Boring, turning, cutting, drilling, grooving, hobbing, milling, and threading are just some of the many applications that make use of them.

    Carbide gives materials a high hot hardness in addition to a remarkable wear resistance when used in their construction. Carbide inserts are a superior option than high-speed steel when it comes to durability, making them a good pick for use in applications that require cutting metal. Coatings that provide additional resistance to wear, such as titanium nitride (TiN), titanium carbonitride (TiCN), titanium aluminum nitride (TiAlN), and aluminum titanium nitride (AlTiN), may lengthen the life of inserts by a significant amount. Examples of these coatings include titanium nitride (TiN), titanium carbonitride (TiCN), titanium aluminium nitride

    Carbide inserts are manufactured in a large number of distinct geometric forms, each of which is customised specifically to each certain application in order for them to be able to carry out the various cutting processes. Carbide inserts are used in a variety of industries, including automotive, aerospace, and construction.

    Carbide is more brittle than other standard tool materials, making it more subject to chipping and breaking, in addition to being more costly per unit than other typical tool materials. Because of these drawbacks, the carbide cutting tip itself is sometimes designed in the form of a tiny insert that is intended to be used in conjunction with a larger cutting tip on a tool whose shank is constructed from a different material, most frequently carbon tool steel. This provides the advantage of employing carbide at the cutting interface without the high expense and brittleness that would be associated with manufacturing the complete tool out of carbide. Carbide inserts are used in the majority of contemporary face mills, in addition to numerous lathe tools and end mills.

    Inserts that are round or circular may be used for button milling, in addition to turning and splitting radius grooves. This is because of their versatility. Copy cutters, which are often referred to as button mills, are machines that make use of circular inserts that have a radiuses edge to a significant degree. Because of this, better feed rates and deeper cuts may be performed while consuming a much reduced amount of electricity. The transformation of radial grooves into a round component is referred to as “radius groove turning,” and the method is named after the term. Parting is the process of cutting through a section in its entirety, and the term refers to both the procedure and the result.

    When one of the insert’s cutting edges is worn, it may be turned to a fresh, unused edge for shapes that are triangular, square, rectangular, diamond, rhombic, pentagon, and octagon. Other shapes that have multiple cutting edges include octagon, pentagon, and rhombic. Other forms, such as rhombuses, pentagons, and octagons, also contain many angles that may be used for cutting. These inserts have a variety of applications, including turning, boring, drilling, and grooving, to name a few of them. You may get more use out of an insert by utilizing its worn edges for roughing applications before rotating it to a fresh edge and using it for final machining. This will allow you to get more life out of the insert.

    Carbide insert wear that is visible in woodcutting is caused, in great part, by chemical corrosion with the cobalt binder of the carbide (glue). Because of this, the tough tungsten particles are able to leach away, which results in a blunting of the cutting edge.

    Carbide CNC inserts Process:

  • Batching
  • The absolute best raw material consists of a very fine spherical powder formed of cobalt, in addition to other compounds that have an extremely high level of purity. It is possible for each batch of powder to preserve its homogeneity and consistency throughout the production process by using the most cutting-edge mixing and wet milling technologies, in conjunction with accurate calculation.

  • Ball Milling
  • The nanotubes are reduced to an extremely fine powder by a process known as ball milling, which is a kind of grinding. This operation is also known as milling. During the process of ball milling, a localised high pressure will be formed as a consequence of the collision between the tiny hard balls that are enclosed in a concealed container. This collision will take place within the mill.

  • Spray Drying
  • Utilizing a spiral spray dryer tower allows for the powder to have an exceptional fluidity, which, in turn, leads to a density that is consistent throughout the carbide inserts blanks. This is the end product of the process. Our fixed tower, which is only committed to defined tasks, avoids any mixing of grains of varied sizes within a batch. This helps to ensure that the uniformity and high quality of each and every substrat is maintained throughout the production process.

  • Pressing
  • To get started, the material is put through a press that is highly automated, CNC controlled, and equipped with punches and dies so that it may be pressed into the necessary basic shape and size. The inserts, after being pressed, have a look that is quite similar to that of a true carbide insert; nevertheless, their hardness is not even close to meeting the requirements. Imported press machines and high-precision moulding machines, along with homogeneous spray powder, ensure that the density of the substrate body is comparable with the density of the clearance as well as the cutting edge of carbide inserts. This is accomplished by ensuring that the density of the substrate body is the same as that of the clearance. The grind value is delicately adjusted so that the whole surface and cutting edge are constant, as well as the tool’s durability and duration of use. This is done so that the tool may be used for a longer period of time.

  • Sintering
  • In order to get the desired result of increased brittleness, the insert is subjected to a heat treatment that lasts for 15 hours and is carried out at a temperature of 1500 degrees Celsius. Sintering is the process by which the molten cobalt and tungsten carbide particles are brought together and bonded together. First, the insert goes through a significant shrinkage, and this shrinkage must be precise in order to achieve the appropriate tolerance; second, the powder mixture is transformed into a new metallic material that is known as cemented carbide. The treatment process that takes place in the sintering furnace accomplishes two goals. The cobalt magnetic pole tolerance on the inside of the sintering furnace is guaranteed to be within 0.3, and the magnetic force is guaranteed to be within 0.5. Neither of these parameters may be outside of their respective ranges. Carbide inserts that are manufactured using a large number of batches have remarkable stability. This is because even the smallest amount of variation is sufficient to minimise the quality variation of each batch to a minimum as much as is humanly feasible.

    The following phase in the process, which comes after the insert has achieved the necessary amount of hardness, is to bring it to a point where it can be delivered to the customer. Before going on to the next step of manufacture, we will first use the coordinate measuring equipment to do a comprehensive check to confirm that the size of the insert satisfies all of the parameters. This will be done before we move on to the next stage.

  • Gross Inspection
  • When doing quality control on the raw materials, it is necessary to make use of a carbon-sulfur analyzer. This is done to ensure that the tungsten carbide powder has an adequate amount of both carbon and Sulphur.

    After the sintering process, the material is examined using a variety of tools, including the following: Conduct tests to determine the TRS of the carbide rod, as well as its microstructure, cobalt concentration, and the material’s hardness. Include a dropping test to confirm that there is no flaw in the material in the centre or inside of the blank. Additionally, include an ultrasonic scanner for carbide die blanks to check that there is no sand hole inside the blank.

    After being sintered, the material is subjected to a manual examination, which it must pass. Carburization and decarburization, sand holes in the surface, and tiny fissures are some of the things that should be looked for while doing a visual inspection of the material to determine whether or not it is flawed.

    After sintering, the sizes are checked using the following criteria: A micrometer will be used to measure the dimensions, and an additional test for roundness will be performed on carbide rods.

  • Grinding
  • Diamonds are used in the grinding process so that the carbide insert will ultimately have the correct shape after the operation is finished. In order for the inserts to be of a quality that is commensurate with the requirements imposed by the geometric angles, they are ground using a variety of techniques. Throughout the process of grinding, the insert is subjected to checks and measurements by the grinder’s built-in measuring control at a number of different places.

  • Semi-Inspection
  • After yet another visit to the lab for a quality check, the top and bottom of the insert are ground to the right thickness. This completes the manufacturing process. The stage that we are now at is called the semi-inspection. Grinding cemented carbide, which is the hardest material that humans have ever discovered, needs industrial diamond, which is the hardest mineral that exists on any planet.

  • Passivation
  • After the insert has had its thickness reduced to the proper level, it is subjected to further grinding in order to create the ideal form and dimensions for it. Higher standards, both in terms of performance and stability, have been imposed on cutting tools in order to meet the needs of contemporary high-speed cutting and automated machine tools. In particular, coated tools have to go through the process of passivation before they can be coated. This is done to guarantee that the coating will be durable and will last for a long time. The objective of the edge passivation technology is to solve the issue of the micro notch defect that is left on the edge of the carbide inserts after grinding, to reduce or eliminate the edge value, and to achieve the objective of making the edge smooth, sharp, and durable.

  • Cleaning
  • Once the inserts have been machined, the next step is for them to be cleaned, and then they are shipped to be coated. When working with the inserts at this stage, it is imperative that protective gloves be used so that no oil or dust gets on the hands. They are given a coating after first being positioned into fixtures that are fastened to a carousel and then being placed within an oven that maintains a low pressure. This is the component of the insert that is responsible for giving it its unique color.

  • Coating
  • Not only does it completely relieve the internal tension of the substrate, but it also removes the unevenly high edges of the carbide inserts, which means that the continuity and consistency of the edge of each carbide insert is substantially improved. The state-of-the-art sandblasting and grinding equipment that are equipped with the pre-coating treatment method that was created by our company make this accomplishment feasible.

    Chemical vapour deposition, often known as CVD, and physical vapour deposition are the names of the two methods that are used to coat objects in today’s world (PVD). The nature of the material and the processing procedure come into play when deciding which coating method to use. The thickness of the coating is going to be determined by the application of the insert, and the thickness of the coating is going to have an effect on the durability and the life of the insert. The surface of the cemented carbide is coated with a number of very thin coatings, including as titanium carbide, aluminum oxide, and titanium nitride. These coatings have the potential to considerably prolong the material’s service life and durability. The fact that there are a lot of coatings is the closely guarded technical secret behind this.

    Before adding gaseous chloride and oxide, as well as methane and hydrogen, the insert has to be positioned within the furnace in the event that the coating procedure involves the CVD approach. These gases interact with one another and also take action on the surface of the cemented carbide to generate the insert when the temperature reaches one thousand degrees Celsius. You will wind up with an even coating that is no thicker than a few thousandths of a millimeter at most. This will be the result of your efforts. The value of some coated inserts goes up because the surface is given a golden finish. In addition, the lifespan of the coated inserts is much longer than that of the untreated inserts by a factor of five. PVD is sprayed onto the insert while it is heated at a temperature of 400 degrees Celsius.

  • Inspection
  • Following the completion of the final inspection, each insert is checked against the blueprints and the batch order to ensure that it meets the standards. After that, you may finally start packing it. After having the proper grade laser-etched into the insert, it is then placed in a grey box that has a printed label affixed to it. Finally, the insert is given its final presentation. It is now ready to be distributed to the many customers who purchased it. On the insert box, you’ll find not only information about the product, but also the date, as well as the serial number.

    Why Carbide Inserts Are So Great?

    • When compared to other types of tools, carbide inserts provide superior levels of productivity and cost effectiveness.
    • Carbide is a particularly durable substance, which results in a significantly increased amount of time-spent working.
    • Tungsten carbide is available in more than a dozen distinct grades, and each of these grades has the potential to be used for a variety of purposes.
    • Carbide materials, when used as cutting tools, give a surface finish quality that is much superior to that of other materials.

    In addition, carbide recycling materials such as carbide inserts may be used to a wide variety of purposes, which makes these materials an important component for a lot of different companies. Let’s take a more in-depth look, shall we?

    • Surgical Instruments

    Tungsten carbide is one of the most often used instruments because it is both precise and long-lasting, two qualities that are essential for a variety of medical operations. One of the most noteworthy applications for carbide is in surgical instruments. Tungsten carbide is used to manufacture the tip of the blade of the tool as well as the end of the utensil, despite the fact that the base of the tool itself is normally fashioned from titanium or stainless steel.

    • Jewelry

    Carbide is an excellent material for jewelers all over the world to use, not just for the shape of jewelry but also for the jeweler itself. Tungsten is an excellent material for wedding rings and other types of jeweler because of its high level of hardness, which places it just slightly below that of diamonds. In addition, jewelers have to depend on effective tools in order to work on these items, and carbide is an excellent material for that purpose. What’s not to like about tungsten jeweler, since it has a great appearance, is highly durable, and is often less expensive than gold?

    • Nuclear Science

    Carbide has also shown to be an efficient neutron reflector in several applications. This robust substance was also employed during the early research into nuclear chain reactions, notably for the protection of weapons during those early studies. Although the usage of carbide in this business is not quite as prevalent as it may be in some of the others, it is very essential that anybody working with any kind of material do so in the most careful manner possible..

    Conclusion

    The insert grade that you employ may make all the difference in the world when it comes to how productive your manufacturing process is, and this is true regardless of the size, material, or TCMT Insert design of the component. You may keep ahead of the competition by choosing the appropriate insert for the particular machining process you will be doing. Inserts are an essential part of the metal cutting process and cannot be imagined without them. The inserts themselves are crafted from some of the most abrasive substances that can be found anywhere in the globe.

    Carbide inserts manufacturers like HUANA are able to fulfil the demands for ever-increasing feeds and speeds, as well as the need for longer tool life and reduced costs, by continuously refining the designs of tungsten carbide inserts and creating better and better coating methods. As one of the leading manufacturers of carbide inserts, HUANA offers the best cutting tool solution for almost any application or machining process. With a variety of inserts and insert configurations that have been designed specifically Cutting Tool Inserts for different metals, such as steels, stainless steel, cast iron, and aluminum alloy, HUANA is able to cater to a wide range of cutting needs. Whether you are roughing, grooving, finishing, or doing any of the various forms of machining. Due to the extensive variety of carbide insert goods and solutions that we provide, we are certain that you will find exactly what you are looking for.

    The Carbide Inserts Website: https://www.estoolcarbide.com/product/tngg160402r-l-s-grinding-cermet-inserts-p-1212/ Factors to Consider when Choosing Carbide Drill Bits

    Carbide inserts are virtually certain to have been used at some stage in the careers of all those who have done work with machines that cut metal. Inserts made of carbide for cutting tools are a product that cannot be overlooked in the metal cutting tool sector. Boring, turning, cutting, drilling, grooving, hobbing, milling, and threading are just some of the many applications that make use of them.

    Carbide gives materials a high hot hardness in addition to a remarkable wear resistance when used in their construction. Carbide inserts are a superior option than high-speed steel when it comes to durability, making them a good pick for use in applications that require cutting metal. Coatings that provide additional resistance to wear, such as titanium nitride (TiN), titanium carbonitride (TiCN), titanium aluminum nitride (TiAlN), and aluminum titanium nitride (AlTiN), may lengthen the life of inserts by a significant amount. Examples of these coatings include titanium nitride (TiN), titanium carbonitride (TiCN), titanium aluminium nitride

    Carbide inserts are manufactured in a large number of distinct geometric forms, each of which is customised specifically to each certain application in order for them to be able to carry out the various cutting processes. Carbide inserts are used in a variety of industries, including automotive, aerospace, and construction.

    Carbide is more brittle than other standard tool materials, making it more subject to chipping and breaking, in addition to being more costly per unit than other typical tool materials. Because of these drawbacks, the carbide cutting tip itself is sometimes designed in the form of a tiny insert that is intended to be used in conjunction with a larger cutting tip on a tool whose shank is constructed from a different material, most frequently carbon tool steel. This provides the advantage of employing carbide at the cutting interface without the high expense and brittleness that would be associated with manufacturing the complete tool out of carbide. Carbide inserts are used in the majority of contemporary face mills, in addition to numerous lathe tools and end mills.

    Inserts that are round or circular may be used for button milling, in addition to turning and splitting radius grooves. This is because of their versatility. Copy cutters, which are often referred to as button mills, are machines that make use of circular inserts that have a radiuses edge to a significant degree. Because of this, better feed rates and deeper cuts may be performed while consuming a much reduced amount of electricity. The transformation of radial grooves into a round component is referred to as “radius groove turning,” and the method is named after the term. Parting is the process of cutting through a section in its entirety, and the term refers to both the procedure and the result.

    When one of the insert’s cutting edges is worn, it may be turned to a fresh, unused edge for shapes that are triangular, square, rectangular, diamond, rhombic, pentagon, and octagon. Other shapes that have multiple cutting edges include octagon, pentagon, and rhombic. Other forms, such as rhombuses, pentagons, and octagons, also contain many angles that may be used for cutting. These inserts have a variety of applications, including turning, boring, drilling, and grooving, to name a few of them. You may get more use out of an insert by utilizing its worn edges for roughing applications before rotating it to a fresh edge and using it for final machining. This will allow you to get more life out of the insert.

    Carbide insert wear that is visible in woodcutting is caused, in great part, by chemical corrosion with the cobalt binder of the carbide (glue). Because of this, the tough tungsten particles are able to leach away, which results in a blunting of the cutting edge.

    Carbide CNC inserts Process:

  • Batching
  • The absolute best raw material consists of a very fine spherical powder formed of cobalt, in addition to other compounds that have an extremely high level of purity. It is possible for each batch of powder to preserve its homogeneity and consistency throughout the production process by using the most cutting-edge mixing and wet milling technologies, in conjunction with accurate calculation.

  • Ball Milling
  • The nanotubes are reduced to an extremely fine powder by a process known as ball milling, which is a kind of grinding. This operation is also known as milling. During the process of ball milling, a localised high pressure will be formed as a consequence of the collision between the tiny hard balls that are enclosed in a concealed container. This collision will take place within the mill.

  • Spray Drying
  • Utilizing a spiral spray dryer tower allows for the powder to have an exceptional fluidity, which, in turn, leads to a density that is consistent throughout the carbide inserts blanks. This is the end product of the process. Our fixed tower, which is only committed to defined tasks, avoids any mixing of grains of varied sizes within a batch. This helps to ensure that the uniformity and high quality of each and every substrat is maintained throughout the production process.

  • Pressing
  • To get started, the material is put through a press that is highly automated, CNC controlled, and equipped with punches and dies so that it may be pressed into the necessary basic shape and size. The inserts, after being pressed, have a look that is quite similar to that of a true carbide insert; nevertheless, their hardness is not even close to meeting the requirements. Imported press machines and high-precision moulding machines, along with homogeneous spray powder, ensure that the density of the substrate body is comparable with the density of the clearance as well as the cutting edge of carbide inserts. This is accomplished by ensuring that the density of the substrate body is the same as that of the clearance. The grind value is delicately adjusted so that the whole surface and cutting edge are constant, as well as the tool’s durability and duration of use. This is done so that the tool may be used for a longer period of time.

  • Sintering
  • In order to get the desired result of increased brittleness, the insert is subjected to a heat treatment that lasts for 15 hours and is carried out at a temperature of 1500 degrees Celsius. Sintering is the process by which the molten cobalt and tungsten carbide particles are brought together and bonded together. First, the insert goes through a significant shrinkage, and this shrinkage must be precise in order to achieve the appropriate tolerance; second, the powder mixture is transformed into a new metallic material that is known as cemented carbide. The treatment process that takes place in the sintering furnace accomplishes two goals. The cobalt magnetic pole tolerance on the inside of the sintering furnace is guaranteed to be within 0.3, and the magnetic force is guaranteed to be within 0.5. Neither of these parameters may be outside of their respective ranges. Carbide inserts that are manufactured using a large number of batches have remarkable stability. This is because even the smallest amount of variation is sufficient to minimise the quality variation of each batch to a minimum as much as is humanly feasible.

    The following phase in the process, which comes after the insert has achieved the necessary amount of hardness, is to bring it to a point where it can be delivered to the customer. Before going on to the next step of manufacture, we will first use the coordinate measuring equipment to do a comprehensive check to confirm that the size of the insert satisfies all of the parameters. This will be done before we move on to the next stage.

  • Gross Inspection
  • When doing quality control on the raw materials, it is necessary to make use of a carbon-sulfur analyzer. This is done to ensure that the tungsten carbide powder has an adequate amount of both carbon and Sulphur.

    After the sintering process, the material is examined using a variety of tools, including the following: Conduct tests to determine the TRS of the carbide rod, as well as its microstructure, cobalt concentration, and the material’s hardness. Include a dropping test to confirm that there is no flaw in the material in the centre or inside of the blank. Additionally, include an ultrasonic scanner for carbide die blanks to check that there is no sand hole inside the blank.

    After being sintered, the material is subjected to a manual examination, which it must pass. Carburization and decarburization, sand holes in the surface, and tiny fissures are some of the things that should be looked for while doing a visual inspection of the material to determine whether or not it is flawed.

    After sintering, the sizes are checked using the following criteria: A micrometer will be used to measure the dimensions, and an additional test for roundness will be performed on carbide rods.

  • Grinding
  • Diamonds are used in the grinding process so that the carbide insert will ultimately have the correct shape after the operation is finished. In order for the inserts to be of a quality that is commensurate with the requirements imposed by the geometric angles, they are ground using a variety of techniques. Throughout the process of grinding, the insert is subjected to checks and measurements by the grinder’s built-in measuring control at a number of different places.

  • Semi-Inspection
  • After yet another visit to the lab for a quality check, the top and bottom of the insert are ground to the right thickness. This completes the manufacturing process. The stage that we are now at is called the semi-inspection. Grinding cemented carbide, which is the hardest material that humans have ever discovered, needs industrial diamond, which is the hardest mineral that exists on any planet.

  • Passivation
  • After the insert has had its thickness reduced to the proper level, it is subjected to further grinding in order to create the ideal form and dimensions for it. Higher standards, both in terms of performance and stability, have been imposed on cutting tools in order to meet the needs of contemporary high-speed cutting and automated machine tools. In particular, coated tools have to go through the process of passivation before they can be coated. This is done to guarantee that the coating will be durable and will last for a long time. The objective of the edge passivation technology is to solve the issue of the micro notch defect that is left on the edge of the carbide inserts after grinding, to reduce or eliminate the edge value, and to achieve the objective of making the edge smooth, sharp, and durable.

  • Cleaning
  • Once the inserts have been machined, the next step is for them to be cleaned, and then they are shipped to be coated. When working with the inserts at this stage, it is imperative that protective gloves be used so that no oil or dust gets on the hands. They are given a coating after first being positioned into fixtures that are fastened to a carousel and then being placed within an oven that maintains a low pressure. This is the component of the insert that is responsible for giving it its unique color.

  • Coating
  • Not only does it completely relieve the internal tension of the substrate, but it also removes the unevenly high edges of the carbide inserts, which means that the continuity and consistency of the edge of each carbide insert is substantially improved. The state-of-the-art sandblasting and grinding equipment that are equipped with the pre-coating treatment method that was created by our company make this accomplishment feasible.

    Chemical vapour deposition, often known as CVD, and physical vapour deposition are the names of the two methods that are used to coat objects in today’s world (PVD). The nature of the material and the processing procedure come into play when deciding which coating method to use. The thickness of the coating is going to be determined by the application of the insert, and the thickness of the coating is going to have an effect on the durability and the life of the insert. The surface of the cemented carbide is coated with a number of very thin coatings, including as titanium carbide, aluminum oxide, and titanium nitride. These coatings have the potential to considerably prolong the material’s service life and durability. The fact that there are a lot of coatings is the closely guarded technical secret behind this.

    Before adding gaseous chloride and oxide, as well as methane and hydrogen, the insert has to be positioned within the furnace in the event that the coating procedure involves the CVD approach. These gases interact with one another and also take action on the surface of the cemented carbide to generate the insert when the temperature reaches one thousand degrees Celsius. You will wind up with an even coating that is no thicker than a few thousandths of a millimeter at most. This will be the result of your efforts. The value of some coated inserts goes up because the surface is given a golden finish. In addition, the lifespan of the coated inserts is much longer than that of the untreated inserts by a factor of five. PVD is sprayed onto the insert while it is heated at a temperature of 400 degrees Celsius.

  • Inspection
  • Following the completion of the final inspection, each insert is checked against the blueprints and the batch order to ensure that it meets the standards. After that, you may finally start packing it. After having the proper grade laser-etched into the insert, it is then placed in a grey box that has a printed label affixed to it. Finally, the insert is given its final presentation. It is now ready to be distributed to the many customers who purchased it. On the insert box, you’ll find not only information about the product, but also the date, as well as the serial number.

    Why Carbide Inserts Are So Great?

    • When compared to other types of tools, carbide inserts provide superior levels of productivity and cost effectiveness.
    • Carbide is a particularly durable substance, which results in a significantly increased amount of time-spent working.
    • Tungsten carbide is available in more than a dozen distinct grades, and each of these grades has the potential to be used for a variety of purposes.
    • Carbide materials, when used as cutting tools, give a surface finish quality that is much superior to that of other materials.

    In addition, carbide recycling materials such as carbide inserts may be used to a wide variety of purposes, which makes these materials an important component for a lot of different companies. Let’s take a more in-depth look, shall we?

    • Surgical Instruments

    Tungsten carbide is one of the most often used instruments because it is both precise and long-lasting, two qualities that are essential for a variety of medical operations. One of the most noteworthy applications for carbide is in surgical instruments. Tungsten carbide is used to manufacture the tip of the blade of the tool as well as the end of the utensil, despite the fact that the base of the tool itself is normally fashioned from titanium or stainless steel.

    • Jewelry

    Carbide is an excellent material for jewelers all over the world to use, not just for the shape of jewelry but also for the jeweler itself. Tungsten is an excellent material for wedding rings and other types of jeweler because of its high level of hardness, which places it just slightly below that of diamonds. In addition, jewelers have to depend on effective tools in order to work on these items, and carbide is an excellent material for that purpose. What’s not to like about tungsten jeweler, since it has a great appearance, is highly durable, and is often less expensive than gold?

    • Nuclear Science

    Carbide has also shown to be an efficient neutron reflector in several applications. This robust substance was also employed during the early research into nuclear chain reactions, notably for the protection of weapons during those early studies. Although the usage of carbide in this business is not quite as prevalent as it may be in some of the others, it is very essential that anybody working with any kind of material do so in the most careful manner possible..

    Conclusion

    The insert grade that you employ may make all the difference in the world when it comes to how productive your manufacturing process is, and this is true regardless of the size, material, or TCMT Insert design of the component. You may keep ahead of the competition by choosing the appropriate insert for the particular machining process you will be doing. Inserts are an essential part of the metal cutting process and cannot be imagined without them. The inserts themselves are crafted from some of the most abrasive substances that can be found anywhere in the globe.

    Carbide inserts manufacturers like HUANA are able to fulfil the demands for ever-increasing feeds and speeds, as well as the need for longer tool life and reduced costs, by continuously refining the designs of tungsten carbide inserts and creating better and better coating methods. As one of the leading manufacturers of carbide inserts, HUANA offers the best cutting tool solution for almost any application or machining process. With a variety of inserts and insert configurations that have been designed specifically Cutting Tool Inserts for different metals, such as steels, stainless steel, cast iron, and aluminum alloy, HUANA is able to cater to a wide range of cutting needs. Whether you are roughing, grooving, finishing, or doing any of the various forms of machining. Due to the extensive variety of carbide insert goods and solutions that we provide, we are certain that you will find exactly what you are looking for.

    The Carbide Inserts Website: https://www.estoolcarbide.com/product/tngg160402r-l-s-grinding-cermet-inserts-p-1212/

    Face Grooving Innovation Like Only BIG KAISER Can

    Multiprocess or multitasking machine tools Coated Inserts are typically thought of as machines combining operations such as milling, turning and perhaps grinding within a single machine tool. A more focused metalcutting operation that multitasking machines might also perform is gearcutting.

    But when does gearcutting on a more versatile CNC machine make more sense than a conventional dedicated hobbing machine? I spoke with Mazak Senior Applications Engineer Mike Finn and Cybertec Hybrid Multi-Tasking Manager Joe Wilker to find out. We discussed the Mazak Integrex i-630V AG Hybrid multitasking machine, which is designed to cut gears through CNC milling and skiving.

    Multitasking machines benefit from being able to perform multiple machining operations in a single setup. Here, we see an Integrex i-630AG using a skiving operation to cut teeth into the ID of a part. Photo Credit: Mazak

    To Hob or Not To Hob

    Although dedicated gear hobbing machines are the dominant production method for making metal gears, this process has faced competition in recent years from milling and skiving as customer demand has changed. Just-in-time and lean manufacturing philosophies have led many traditional gear customers to avoid keeping large backstocks, which has led to smaller order sizes across many industries.

    While hobbing is the fastest method of gear manufacturing, its economic viability is questionable for shops with high-mix, low-volume work. According to Finn, the flexibility of a multitasking machine makes up for the difference in speed. “While specialty gear machines are best for high-volume gear applications producing tens of thousands of units of a single part, the trade-off is what happens to this specialty gear machine once the job is over,” he says. “Multitasking auto-gear machines like the i-630AG can be easily changed over to a new job or even a different process.”

    The reason it is so easy to change to a new job with a CNC milling or multitasking machine is simple: While a hob must be designed with the final profile of the gear teeth in mind, a single end mill can cut numerous gear tooth geometries without needing changed. The economics of scale mean that high-mix, low-volume shops will get far more use out of their tooling using CNC end mills that can cut numerous features, while low-mix, high-volume shops will get more use out of a few hobs that can produce identical gears more quickly.

    MIlling gears on a multitasking AG machine provides flexibility to the user. An end mill can be used to machine numerous features, which means they can be useful for complex parts with gear features, as well as low-volume work. Photo Credit: Mazak

    Another draw to multitasking machines is their ability to fully machine parts with splines or gear teeth in a single chucking. Rather than using different machines for the gear features and the milling or turning processes, the user can produce a complete product in a single setup. This reduces the amount of time a shopfloor worker must spend loading and unloading machines, making them much more competitive in smaller batch sizes.

    According to Finn, we also cannot discount the changeover between different processes. “A multitasking auto-gear machine has a quick changeover from gear skiving to gear hobbing to gear milling,” he says. “This enables users to more quickly produce complex gears with multiple features.”

    Flexible Gearcutting in Five Axes

    According to the company, the i-630AG is capable of five-axis machining and is designed to produce large, complex parts. Additionally, it can machine difficult materials such as hardened steel using cutting tools with a maximum diameter of 10.24 inches and max length of 19.69 inches. With large, complex gears being ideal for low-mix, high-volume work, it is well positioned for outcompeting dedicated hobbing machines in its niche.

    There are other benefits specific to multitasking machines, according to Wilker. “Using a multitasking machine simplifies the programming, in comparison to using both a hobbing machine and a mill,” he says. Additionally, it enables in-process gear measurement, making it easier to avoid scrap. And according to Wilker, “Datum points can be held in relation to gear teeth with one chucking, improving part accuracy.”

    Every machine shop must make its own economic calculations on how to make purchases. For some, the batch sizes of customers’ orders can justify investing in a dedicated hobbing machine. However, the flexibility of being able to skive the OD while milling complex features without changing machines will appeal to others. Photo Credit: Mazak

    Both the C and B axes are monitored in the i-630AG using rotary-axis scale feedback, and both are synchronized to prevent fluctuations in the spindle speeds from producing out-of-spec parts. The machine uses Mazak’s Mazatrol SmoothAI control and includes Smooth Gear Cutting software, which automatically adjusts cutting parameters if either the milling or turning spindle drifts away from the target speed. “Thanks to the machine’s synchronization, we’ve increased productivity,” says Wilker. “Additionally, heat-treated materials can be cut with carbide cutters and cut small-to-large / heavy-ID or -OD gears based on machine models.”

    According to the company, the machine’s control is designed to enable the user to completely program a job at the machine, rather than offline or at a dedicated CAM system. “This lets users create a part program in its entirety, including turning, drilling, milling and Threading Inserts gear-tooth machining on the machine control without additional software and without a part model.” For users nervous about programming entirely on the machine control, each gear-cutting module can be verified through toolpath simulation accessible on the control.

    For a machine shop, it is dangerous to rely on old orthodoxy when it comes to growing the business, as we can see with this machine. While experience can guide shops well, it is important to dispassionately interrogate the way parts are processed and decide if that is still the way forward. Where once productivity and precision were the only measures of a machine’s value, it seems that more shops are performing this calculus and concluding that flexibility is vital to their success.

    The Carbide Inserts Website: https://www.estoolcarbide.com/

    How Industrial Prototyping for a Headlamp is Carried out

    Why is tungsten carbide an ideal tool material?

    Tungsten carbide is the most widely used type of high-speed machining (HSM) tool material produced by powder metallurgy, consisting of hard carbide (usually tungsten carbide WC) particles and a softer metal bond. composition. At present, there are hundreds of WC-based tungsten carbides with different compositions, most of which use cobalt (Co) as a binder. Nickel (Ni) and chromium (Cr) are also commonly used binder elements, and other additives can be added. Some alloying elements.

    Why are there so many carbide grades? How do tool manufacturers choose the right tool material for a particular cutting process? To answer these questions, let us first understand the various properties that make tungsten carbide an ideal tool material.

    What is Tungsten carbide ?- the unity of hardness and toughness

    ?WC-Co tungsten carbide has a unique advantage in both hardness and toughness. Tungsten carbide (WC) itself has a very high hardness (beyond corundum or alumina) and its hardness is rarely reduced as the operating temperature increases. However, it lacks sufficient toughness, which is an essential property for cutting tools. In order to take advantage of the high hardness of tungsten carbide and improve its toughness, metal binders are used to bond tungsten carbide so that the material has a hardness far exceeding that of high-speed steel while being able to withstand most cutting processes. Cutting force. In addition, it can withstand the high temperatures of cutting produced by high-speed machining.

    Today, almost all WC-Co tools and inserts are coated, so the role of the matrix material seems less important. But in fact, it is the high modulus of elasticity of the WC-Co material (the measure of stiffness, the room temperature modulus of WC-Co is about three times that of high-speed steel) provides a non-deformable substrate for the coating. The WC-Co matrix also provides the required toughness. These properties are basic properties of WC-Co materials, but they can also be tailored to the material composition and microstructure when producing tungsten carbide powders. Therefore, the suitability of the tool performance to a particular process depends to a large extent on the initial milling process.

    What is the milling process for tungsten carbide?

    The tungsten carbide powder is obtained by carburizing the tungsten (W) powder. The properties of the tungsten carbide powder, especially its particle size, depend primarily on the particle size of the raw tungsten powder and the temperature and time of carburization. Chemical control is also critical, and the carbon content must be kept constant (close to the theoretical ratio of 6.13% by weight). In order to control the particle size by a subsequent process, a small amount of vanadium and/or chromium may be added before the carburizing treatment. Different downstream process conditions and different final processing applications require a combination of specific tungsten carbide particle size, carbon content, vanadium content, and chromium content, and variations in these combinations can produce a variety of different tungsten carbide powders.

    When the tungsten carbide powder is mixed and ground with a metal bond to produce a certain grade of tungsten carbide powder, various combinations can be employed. The most commonly used cobalt content is 3% to 25% by weight, and nickel and chromium are required to increase the corrosion resistance of the tool. In addition, the metal bond can be further improved by adding other alloy components. For example, the addition of niobium to WC-Co tungsten carbide can significantly improve the toughness without lowering its hardness. Increasing the amount of binder can also increase the toughness of the tungsten carbide, but it will reduce its hardness.

    Reducing the size of the tungsten carbide particles can increase the hardness of the material, but in the sintering process, the particle size of the tungsten carbide must remain unchanged. At the time of sintering, the tungsten carbide particles are combined and grown by the process of dissolution and re-precipitation. In the actual sintering process, in order to form a completely dense material, the metal bond is turned into a liquid state (referred to as liquid phase sintering). The growth rate of the tungsten carbide particles can be controlled by adding other transition metal carbides including vanadium carbide (VC), chromium carbide (Cr3C2), titanium carbide (TiC), tantalum carbide (TaC), and niobium carbide (NbC). These metal carbides are usually added during the mixing and milling of the tungsten carbide powder together with the metal binder, although vanadium carbide and chromium carbide can also be formed when carburizing the tungsten carbide powder.

    Grades of tungsten carbide powder can also be produced from recycled solid carbide materials. The recycling and reuse of used tungsten carbide has a long history in the tungsten carbide industry and is an important part of the industry’s entire economic chain, helping to reduce material costs, conserve natural resources and avoid waste materials. Harmful disposal. Waste tungsten carbide can generally be reused by APT (ammonium paratungstate) process, zinc recovery process or by pulverization. These “recycled” tungsten carbide powders generally have better, predictable densification because their surface area is smaller than tungsten carbide powder made directly from the tungsten carburizing process.

    The processing conditions for the mixing of tungsten carbide powder with a metal bond are also critical process parameters. The two most common milling techniques are ball milling and ultrafine milling. Both processes allow the milled powder to be evenly mixed and reduce particle size. In order to allow the workpiece to be pressed to have sufficient strength to maintain the shape of the workpiece and allow the operator or robot to pick up the workpiece for operation, it is usually necessary to add an organic binder during milling. The chemical composition of such a binder can affect the density and strength of the pressed workpiece. In order to facilitate the operation, it is preferable to add a high-strength binder, but this results in a lower pressing density and may cause a hard block, resulting in defects in the final product.

    After the milling is completed, the powder is typically spray dried to produce a free flowing mass that is agglomerated by the organic binder. By adjusting the composition of the organic binder, the fluidity and charge density of these agglomerates can be tailored to suit the needs. By screening out coarser or finer particles, the particle size distribution of the agglomerates can be further tailored to ensure good fluidity when loaded into the mold cavity.

    What is the manufacturing method of tungsten carbide workpieces?

    ?Carbide workpieces can be formed by a variety of processes. Depending on the size of the workpiece, the level of shape complexity, and the production lot size, most cutting inserts are molded using a top and bottom pressure rigid mold. In order to maintain the consistency of the weight and size of the workpiece at each press, it is necessary to ensure that the amount of powder (mass and volume) flowing into the cavity is exactly the same. The fluidity of the powder is mainly controlled by the size distribution of the agglomerates and the characteristics of the organic binder. A molded workpiece (or “blank”) can be formed by applying a molding pressure of 10-80 ksi (kilopounds per square foot) to the powder loaded into the cavity.

    Even at extremely high molding pressures, the hard tungsten carbide particles are not deformed or broken, and the organic binder is pressed into the gap between the tungsten carbide particles, thereby functioning to fix the particle position. The higher the pressure, the tighter the bond of the tungsten carbide particles and the greater the compaction density of the workpiece. The molding properties of the graded tungsten carbide powder may vary, depending on the amount of metal binder, the size and shape of the tungsten carbide particles, the extent to which the agglomerates are formed, and the composition and amount of organic binder. In order to provide quantitative information on the pressing characteristics of the grade of tungsten carbide powder, it is usually designed by the powder manufacturer to establish the correspondence between the molding density and the molding pressure. This information ensures that the supplied powder is in line with the toolmaker’s molding process.

    Large-size carbide workpieces or carbide workpieces with high aspect ratios (such as end mills and drill bit shanks) are typically manufactured by uniformly pressing the tungsten carbide powder in a flexible bag. Although the production cycle of the equalization pressing method is longer than the molding method, the manufacturing cost of the tool is lower, so the method is more suitable for small batch production.

    This process involves charging the powder into a bag and sealing the mouth of the bag, then placing the bag filled with the powder in a chamber and applying a pressure of 30-60 ksi by a hydraulic device for pressing. Pressed workpieces are typically machined to specific geometries prior to sintering. The size of the bag is increased to accommodate shrinkage of the workpiece during the compaction process and to provide sufficient allowance for the grinding process. Since the workpiece is processed after press forming, the requirements for consistency of the charge are not as strict as the molding method, but it is still desirable to ensure that the amount of powder per load is the same. If the loading density of the powder is too small, the powder loaded into the bag may be insufficient, resulting in a small workpiece size and having to be scrapped. If the loading density of the powder is too large, the powder loaded into the bag is too much, and the workpiece needs to be processed to remove more powder after press forming. Although the excess powder and scrapped parts can be recycled, this will reduce productivity.

    Carbide workpieces can also be formed by extrusion or injection molding. The extrusion process is more suitable for mass production of axisymmetric shaped workpieces, while the injection molding process is commonly used for mass production of complex-shaped workpieces. In both molding processes, the grade of tungsten carbide powder is suspended in an organic binder that imparts uniformity to the tungsten carbide mixture like toothpaste. The mix is then either extruded through a hole or molded into a mold cavity. The characteristics of the grade of tungsten carbide powder determine the optimum ratio of powder to the binder in the mix and have an important effect on the flow of the mixture through the extrusion orifice or into the mold cavity.

    After the workpiece is formed by molding, equalization pressing, extrusion or injection molding, the organic binder needs to be removed from the workpiece before the final sintering stage. Sintering removes the pores in the workpiece, making it completely (or substantially) dense. At the time of sintering, the metal bond in the press-formed workpiece becomes a liquid, but the workpiece can still maintain its shape under the combined action of capillary force and particle contact.

    After sintering, the geometry of the workpiece remains the same, but the size shrinks. In order to obtain the required workpiece size after sintering, the shrinkage rate needs to be considered when designing the tool. When designing the grade of tungsten carbide powder used to make each tool, it must be ensured that it has the correct shrinkage when pressed under the appropriate pressure.

    In almost all cases, the sintered workpiece which is also called as carbide blank needs to be post-sintered. The most basic treatment for cutting tools is sharpening the cutting edge. Many tools require grinding and geometry of their geometry after sintering. Some tools require grinding of the top and bottom; others require peripheral grinding (with or without sharpening the cutting edge). All carbide wear debris from grinding can be recycled.

    How to prepare the workpiece coating of tungsten carbide?

    In many cases, the finished part needs to be coated. The coating provides lubricity and increased hardness, and provides a diffusion barrier to the substrate that prevents oxidation when exposed to high temperatures. The tungsten carbide matrix is critical to the performance of the coating. In addition to the main characteristics of the custom matrix powder, the surface properties of the substrate can be tailored by chemical selection and modification of the sintering process. Through the migration of cobalt, more cobalt can be enriched in the outermost layer of the blade surface in the thickness of 20-30 μm relative to the rest of the workpiece, thereby imparting better toughness to the surface layer of the substrate, so that it has strong resistance to deformation.

    Tool manufacturers based on their own manufacturing processes (such as dewaxing methods, heating rates, sintering times, temperatures, and carburizing voltages) may impose special requirements on the grades of carbide powder used. Some toolmakers may sinter workpieces in vacuum furnaces, while others may use hot isostatic pressing (HIP) sintering furnaces (which pressurize the workpiece near the end of the process cycle to eliminate any residue). Pore). The workpiece sintered in the vacuum furnace may also need to be subjected to a hot isostatic pressing process to increase the workpiece density. Some tool manufacturers may use higher vacuum sintering temperatures to increase the sintered density of mixtures with lower cobalt content, but this approach may make the microstructure coarse. In order to maintain a fine grain size, a powder having a smaller tungsten carbide particle size may be used. In order to match the specific production equipment, dewaxing conditions and carburizing voltage also have different requirements on the carbon content of the tungsten carbide powder.

    All of these factors have a critical impact on the microstructure and material properties of the tungsten carbide tool that is sintered. Therefore, there is a need for close communication between the tool manufacturer and the powder supplier to ensure that it is manufactured according to the tool. Customized production process custom grade tungsten carbide powder. Therefore, it is not surprising that there are hundreds of different carbide grades. For example, ATI Alldyne produces more than 600 different powder grades, each of which is specifically designed for the intended user and specific use.

    What is the classification method for tungsten carbide grades?

    The combination of different types of tungsten carbide powder, mixture composition and metal binder content, type and amount of grain growth inhibitors, etc., constitutes a variety of carbide grades. These parameters will determine the microstructure and properties of the tungsten carbide. Certain specific performance combinations have become the first choice for specific processing applications, making it possible to classify multiple carbide grades.

    The two most commonly used carbide machining classification systems for machining purposes are the C grade system and the ISO grade system. Although neither of these systems fully reflects the material properties that affect the choice of carbide grades, they provide a starting point for discussion. For each taxonomy, many manufacturers have their own special grades, resulting in a wide variety of carbide grades.

    Carbide grades can also be classified by composition. Tungsten carbide (WC) grades can be divided into three basic types: simple, microcrystalline and alloy. Simple grades consist primarily of tungsten carbide and cobalt binders, but may also contain small amounts of grain growth inhibitors. The microcrystalline grade consists of tungsten carbide and a cobalt binder with a few thousandths of vanadium carbide (VC) and/or chromium carbide (Cr3C2) added, and its grain size can be less than 1 μm. The alloy grade consists of tungsten carbide and a cobalt binder containing several percent of titanium carbide (TiC), tantalum carbide (TaC) and niobium carbide (NbC). These additives are also called cubic carbides because of their sintering. The resulting microstructure exhibits a non-uniform three-phase structure.

    (1) Simple carbide grade

    Such grades for metal cutting typically contain 3%-12% cobalt (by weight). The size of the tungsten carbide grains is usually in the range of 1-8 μm. As with other grades, reducing the particle size of tungsten carbide increases its hardness and transverse rupture strength (TRS), but reduces its toughness. The hardness of simple grades is usually between HRA 89-93.5; the transverse rupture strength is usually between 175-350 ksi. Such grades of powder may contain a large amount of recycled raw materials.

    Simple grades can be divided into C1-C4 in the C grade system and can be classified according to the K, N, S and H grade series in the ISO grade system. Simple grades with intermediate characteristics can be classified as general grades (eg C2 or K20) for turning, milling, planing and boring; grades with smaller grain sizes or lower cobalt content and higher hardness can be used Classified as a finishing grade (such as C4 or K01); grades with larger grain sizes or higher cobalt content and better toughness can be classified as rough grades (eg C1 or K30).

    Tools made from simple grades can be used to cut cast iron, 200 and 300 series stainless steel, aluminum and other non-ferrous metals, superalloys and hardened steel. These grades can also be used in non-metal cutting applications (such as rock and geological drilling tools) with grain sizes ranging from 1.5 to 10 μm (or larger) and cobalt levels from 6% to 16%. Another non-metal cutting type of simple carbide grades is the manufacture of molds and punches. These grades typically have a medium size grain size with a cobalt content of 16%-30%.

    (2) Microcrystalline carbide grade

    Such grades usually contain 6%-15% cobalt. In the liquid phase sintering, the added vanadium carbide and/or chromium carbide can control the grain growth, thereby obtaining a fine grain structure having a particle size of less than 1 μm. This fine grain grade has a very high hardness and a transverse rupture strength of 500 ksi or more. The combination of high strength and sufficient toughness allows these grades of tools to have a larger positive rake angle, which reduces cutting forces and produces thinner chips by cutting rather than pushing metal.

    Through the strict quality identification of various raw materials in the production of grades of tungsten carbide powder and strict control of the sintering process conditions, it is possible to prevent the formation of abnormal large grains in the microstructure of the material. Material properties. In order to keep the grain size small and uniform, the recycled powder can only be used if the raw materials and recovery process are fully controlled and extensive quality testing is performed.

    Microcrystalline grades can be classified according to the M grade series in the ISO grade system. In addition, the other classification methods in the C grade system and the ISO grade system are the same as the simple grades. Microcrystalline grades can be used to make tools for cutting softer workpiece materials because the surface of the tool can be machined very smoothly and maintain an extremely sharp cutting edge.

    Microcrystalline grades can also be used to machine nickel-based superalloys because they can withstand cutting temperatures up to 1200 °C. For the processing of high-temperature alloys and other special materials, the use of micro-grain grade tools and simple grade tools with enamel can simultaneously improve their wear resistance, deformation resistance and toughness. Microcrystalline grades are also suitable for making rotary tools (such as drill bits) that generate shear stress. One type of drill bit is made of a composite grade of tungsten carbide. The specific cobalt content of the material in the specific part of the same bit is different, so that the hardness and toughness of the drill bit are optimized according to the processing needs.

    (3) Alloy type carbide grade

    These grades are mainly used for cutting steel parts, which typically have a cobalt content of 5%-10% and a grain size range of 0.8-2 μm. By adding 4% to 25% of titanium carbide (TiC), the tendency of tungsten carbide (WC) to diffuse to the surface of the steel scrap can be reduced. Tool strength, crater wear resistance and thermal shock resistance can be improved by adding no more than 25% tantalum carbide (TaC) and niobium carbide (NbC). The addition of such cubic carbides also increases the redness of the tool, helping to avoid thermal deformation of the tool during heavy-duty cutting or other machining where the cutting edge can create high temperatures. In addition, titanium carbide can provide nucleation sites during sintering, improving the uniformity of cubic carbide distribution in the workpiece.

    In general, alloy-type carbide grades have a hardness range of HRA91-94 and a transverse rupture strength of 150-300 ksi. Compared with the simple type, the wear resistance of the alloy type has poor wear resistance and low strength, but Cemented Carbide Inserts its bond wear resistance is better. Alloy grades can be divided into C5-C8 in the C grade system, and can be classified according to the P and M grade series in the ISO grade system. Alloy grades with intermediate properties can be classified as general grades (eg C6 or P30) for turning, tapping, planing and milling. The hardest grades can be classified as fine grades (eg C8 and P01) for finishing and boring. These grades typically have a smaller grain size and a lower cobalt content to achieve the desired hardness and wear resistance. However, similar material properties can be obtained by adding more cubic carbides. The most resilient grades can be classified as rough grades (eg C5 or P50). These grades typically have a medium size particle size and a high cobalt content, and the amount of cubic carbide added is also small to achieve the desired toughness by inhibiting DNMG Insert crack propagation. In the interrupted turning process, the cutting performance can be further improved by using the cobalt-rich grade having a higher cobalt content on the surface of the cutter.

    Alloy grades with low titanium carbide content are used for machining stainless steel and malleable cast iron, but can also be used to process non-ferrous metals (such as nickel-based superalloys). These grades typically have a grain size of less than 1 μm and a cobalt content of 8% to 12%. Grades with higher hardness (eg M10) can be used for turning malleable cast iron; grades with better toughness (eg M40) can be used for milling and planing steel or for turning stainless steel or superalloys.

    Alloy-type carbide grades can also be used for non-metal cutting applications, primarily for the manufacture of wear-resistant parts. These grades typically have a particle size of 1.2-2 μm and a cobalt content of 7%-10%. In the production of these grades, a large proportion of recycled materials are usually added, resulting in higher cost-effectiveness in the application of wear parts. Wear parts require good corrosion resistance and high hardness. These grades can be obtained by adding nickel and chromium carbide when producing such grades.

    In order to meet the technical and economic requirements of tool manufacturers, tungsten carbide powder is a key element. Powders designed for toolmakers’ processing equipment and process parameters ensure the performance of the finished part and result in hundreds of carbide grades. The recyclable nature of carbide materials and the ability to work directly with powder suppliers allows tool manufacturers to effectively control their product quality and material costs.

    Dedicated to the top quality china carbide cutting tool, we help you better turning, milling and drilling for greater cost-effectiveness.

    Our products mainly include

    • carbide rods
    • carbide inserts
    • carbide end mills

    The Carbide Inserts Website: https://www.estoolcarbide.com/product/rcgt-aluminum-insert-for-cnc-indexable-tools-p-1217/

    Car Design Light Guides for Headlight Prototype

    Fast job changes on a bar-fed CNC lathe is just wishful thinking if it takes forever to change over the bar feeder. Swiss-Tech Inc., a Delavan, Wisconsin screw machine shop that specializes in Swiss-type parts, was mindful of that fact when it purchased its Star CNC bar machine.

    Swiss-Tech did not want to marry its new CNC bar machine to the same type of hydraulic, replaceable tube-style bar feeders that it was using on its existing CNC bar machines. As its name implies, the replaceable-tube bar feeder has one, replaceable, bar guide tube, and setting it up to run a job involves replacing the guide tube used for the last job with one that closely matches the size of the bar for the next job.

    The replaceable-tube bar feeder is economical. For example, if a shop buys a CNC lathe to run one job, it need only buy a replaceable-tube bar feeder with one guide tube, permitting purchase of the bar feeder for the lowest possible cost.

    However, most shops use their bar machines for a wide range of jobs, and eventually purchase guide tubes for their replaceable-tube bar feeders in many different sizes. Over time, a shop can make a sizable investment in bar feeder guide tubes.

    One disadvantage, however, is that substituting one guide tube for another is time-consuming: the procedure takes about a half-hour and, because the guide tube is 14 feet long, requires two people.

    To avoid saddling its new high-performance CNC bar machine with the problems of a replaceable tube-style bar feeder, Swiss-Tech began looking for a better hydraulic bar feeder. The shop concentrated on multiple-tube bar feeder designs.

    Following a tip from a business associate, Stewart B. Dobson, manufacturing services manager for Swiss-Tech, visited a firm that was using a Turnamic horizontal, multiple-tube bar feeder made by Spego Inc., Asheville, North Carolina. Unlike the multiple-tube bar feeders Dobson had previously considered, the Turnamic’s guide tubes are arranged side by side with their centerlines in the same horizontal plane.

    Mr. Dobson liked the direct, uncomplicated operation of the Turnamic; loading a fresh bar into the unit is a one-man job, done in one minute or less, in response to the bar feeder’s highly visible end-of-bar strobe light. The operator simply pulls a lever to release a tapered locking pin at the front of the bar feeder, swings the bar feeder out from the back of the lathe, loads a fresh bar and repositions the bar feed.

    Mr. Dobson decided that the Turnamic was exactly what he was looking for. When he got back to the plant, he ordered a three-tube Turnamic bar feeder and arranged with the machine tool distributor from whom he had purchased the Star CNC lathe to install it and a Turnamic bar feeder at the same time.

    For Swiss-Tech, the most important advantage of the Turnamic is the speed with which it can be set up for another bar size compared to the shop’s older, replaceable-tube, bar feeders: “On a replaceable-tube unit, to change from one bar size to another, the operator must unclamp the guide tube and remove it from the bar feeder,” Mr. Dobson explained. “It usually takes two workers to handle the 14-foot tube. After the tube is returned to its rack, it must be wiped down because it is usually covered with oil.

    “The operator and his helper then install the guide tube for the next job,” Mr. Dobson continued. “That involves aligning the hydraulics ports, installing bearing caps and bolting them down, and accurately aligning the tube with the machine tool spindle the procedure usually takes about 30 minutes.

    “However, there are times when we can schedule the machine to run a family of parts that are similar except for size,” he continued. “The machine can be loaded with all of the tooling required to machine the family of parts, or provision can be made to quickly change the tooling as a unit, Machining Inserts so that we can be running the the next job in a minute with the Turnamic instead of waiting a half-hour while the replaceable-tube bar feeder is changed over.

    Swiss-Tech’s first Turnamic performed so well with the Star Swiss-style CNC lathe that, one month later, the firm purchased a six-tube, Turnamic 126 model bar feeder to serve a newly purchased Hardinge Brothers CHNC I CNC lathe. The Hardinge lathe is not a Swiss-style machine, but Swiss-Tech was so impressed with the ease of loading, rapid changeover and trouble-free operation that the Turnamic brought to the Star bar machine that it decided that it had to have the same performance for the Hardinge.

    Swiss-Tech is currently considering the purchase of still another new CNC lathe, and the odds are good that the firm will be purchasing another Spego Turnamic bar Carbide Turning Inserts feeder. MMS

    The Carbide Inserts Website: https://www.estoolcarbide.com/product/snmm-tr-cnc-lathe-tungsten-carbide-inserts-for-steel-turning-inserts/